موضوعات
دوستان
برچسب ها
دیگر موارد
|
نوشته شده به دست سید مصطفی حسینی
كنترل يك موتور ac سه فاز به كمك ميكروكنترلر PIC امروز به معرفي يكي از كاربردهاي مهم ميكروكنترلرهاي pic ميپردازيم.توصيه ميكنيم حتما اين مقاله را مطالعه كنيد.در اين مقاله از شركت ميكروچيپ به بررسي كاربرد ميكروكنترلر PIC18F4431 در كنترل يك موتور ac سه فاز پرداخته شده است كه بسيار جامع و پر محتوا نيز هست. در ابتداي اين مقاله به بررسي روشهاي قابل استفاده در حالت كنترل حلقه باز و حلقه بسته در حالت V/F به وسيله اين ميكرو پرداخته است.
سپس مشخصات اين ميكرو كنترلر را آورده كه مهمترين قسمت آن دقت 14 بيت در توليد PWM است.سپس نحوه بستن يك پل به كمك 6 عدد IGBT آورده شده كه به سيم پيچهاي يك موتور متصل شده است.در ادامه به نحوه استفاده از روش PWM در كنترل يك موتور و شكل موجهاي آن پرداخته و سپس به V/F با فيدبك جريان پرداخته است.در ادامه سرويس روتين برنامه رسم شده تا در هنگام برنامه نويسي از اين رويه استفاده شود.همچنين روش كنترل حلقه بسته با بلوك دياگرامهاي كامل گفته شده.در انتها شماتيكهاي مورد نياز شما جهت اتصالات بين ميكرو و مدار درايور موتور آورده شده است. منبع : شرکت نام الکترونیک سپاهان
موضوعات مرتبط: برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
آشنايي با ميكروكنترلرهاي PIC با ارائه نسل جدید میکروکنترلرها توسط شرکت میکروچیپ، برنامه نویسی میکرو وارد مرحله جدیدی شد و روشهای سنتی برچیده شد - به این ترتیب دیگر نیازی نیست برای اسال اطلاعات به LCD زیربرنامه ای فراخوانی شود بلکه فقط با استفاده از یک دستور LCD OUT منتقل میشود. همچنین برای خواندن ورودی آنالوگ دیگر لازم نیست زیربرنامهای نوشته شود و در آن بارها ریجیسترهای مختلف را چک کنیم و بسیاری از وقت و انرژی خود را صرف کنیم بلکه فقط بااستفاده از دستور ADCIN مستقیماً ورودی آنالوگ را در یک متغیر می ریزیم - و دهها مثال دیگر در این زمینه میتوان ارائه داد. همه این قابلیت ها به مدد استفاده از زبان سطح بالا ایجاد میشود. بدین صورت که بسیاری از زیربرنامه های متداول از قبیل : نوشتن در LCD و خواندن ورودی آنالوگ و تولید موج DTMF و شمردن فرکانس روی هر پین و نوشتن و خواندن حافظه I2C و ارتباطات سریال و تاخیر به مدت طولانی و..... توسط شرکت میکروچیپ به صورت یک تابع یا دستور مشابه با دستورات Basic یا C ارائه شده است که باعث میشود هم تعداد خطوط برنامه کمتر شود وهم برنامه نویس از سردرگمی رهایی یابد. علاوه بر اینها تولیدات میکروکنترلرهای PIC بسیار متنوع است و صدها نوع IC با تعداد پایه ها و قابلیت های متفاوتوجود دارد و کاربر باید از این محصولات آگاهی داشته باشد و بر حسب پروژه، از IC مناسب استفاده نماید. براي دريافت اطلاعات بيشتر لينك زير را دانلود كنيد موضوعات مرتبط: برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
آشنایی با قطعات الکترونیک (مقاومت - سلف - خازن - دیود - ترانزیستور) در لینک زیر یک جزوه آموزشی برای قطعات الکترونیک رو قرار دادم که در این جزوه قطعاتی چون خازن -مقاومت- دیود- ترانزیستور - سلف ونحوه تست آنها به طور کامل آموزش داده شده است. موضوعات مرتبط: برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
اساس کار رادارها امواج رادار چيزي است كه در تمام اطراف ما وجود دارد، اگر چه ديده نميشود. مركز كنترل ترافيك فرودگاهها براي رديابي هواپيماها چه آنها كه بر روي باند فرودگاه قرار دارند و چه آنها كه در حال پرواز هستند و هدايت آنها از رادار استفاده ميكنند. در برخي از كشورها پليس از رادار براي شناسايي خودروهاي با سرعت غير مجاز استفاده ميكند. ناسا از رادار براي شناسايي موقعيت كرة زمين و ديگر سيارات استفاده ميكند، همين طور براي دنبال كردن مسير ماهوارهها و فضاپيماها و براي كمك به كشتيها در دريا و مانورهاي رزمي از آن استفاده ميشود. مراكز نظامي نيز براي شناسايي دشمن و يا هدايت جنگافزارهايشان از آن استفاده ميكنند چيزي است كه در تمام اطراف ما وجوددارد، اگر چه ديده نميشود. مركز كنترل ترافيك فرودگاهها براي رديابي هواپيماها چهآنها كه بر روي باند فرودگاه قرار دارند و چه آنها كه در حال پرواز هستند و هدايتآنها از رادار استفاده ميكنند. در برخي از كشورها پليس از رادار براي شناساييخودروهاي با سرعت غير مجاز استفاده ميكند. ناسا از رادار براي شناسايي موقعيت كرةزمين و ديگر سيارات استفاده ميكند، همين طور براي دنبال كردن مسير ماهوارهها وفضاپيماها و براي كمك به كشتيها در دريا و مانورهاي رزمي از آن استفاده ميشود. مراكز نظامي نيز براي شناسايي دشمن و يا هدايت جنگافزارهايشان از آن استفادهميكنند. هواشناسان براي شناسايي طوفانها،تندبادهاي دريايي و گردبادها از آن استفاده ميبرند. شما حتي نوعي خاص از رادار رادر مدخل ورودي فروشگاهها ميبينيد كه در هنگام قرار گرفتن اشخاص در مقابلشان، دربرا باز ميكنند. بطور واضح ميبينيد كه رادار وسيلهاي بسيار كاربردي ميباشد. دراين بخش از مقالات ما به اسرار رادار ميپردازيم.
پژواك پديدهاي است كه شما هر روزه با آن برخورد داريد، اگرشما به داخل يك چاه و يا در يك دره فرياد بزنيد، پژواك صداي شما چند لحظه بعد بهگوشتان ميرسد. در واقع شما صدايتان را باز خواهيد شنيد. پژواك بدين جهت رخ ميدهدكه بعضي از امواج صداي شما (به اين دليل واژه بعضي را آورديم كه صداي برخي ازحيوانات مانند اردك در فركانس خاص امواج صداي اين حيوان هيچگاه پژواكي ندارد) پس ازبرخورد به يك سطح (كه اين سطح ميتواند سطح آب، انتهاي چاه يا ديوارة كوه موجود درانتهاي دره باشد) به سمت شما باز ميگردد و گوش شما دوباره آنرا ميشنود. فاصلهزمانياي كه بين فرياد شما تا شنيدن پژواك آن طول ميكشد با فاصله مكاني بين شما وآن سطح بازگردانندة پژواك ارتباط دارد.
موضوعات مرتبط: علمی-مقالات، برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
مطالبی در مورد ژنراتورها مقدمه: هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع ژنراتورها(ساختمان و اساس کار و سیر تکاملی ژنراتوها بخصوص ژنراتور های سنکرون ) است . به این منظور ، بررسی مقالات منتشر شده که با این موضوع مرتبط بودند و جمع آوری خلاصه مطالبی از منابع صورت گرفت و بعد چکیده آنها استخراج شد. ژنراتورها همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی و کاربردهای خاص دیگر ایفاء کرده است . ساخت اولین نمونه ژنراتور (سنکرون) به انتهای قرن 19 برمی گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. در کانون این تحول ، یک هیدروژنراتور سه فاز 210 کیلو وات قرار گرفته بود. عیلرغم مشکلات موجود در جهت افزایش ظرفیت و سطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده ای برای نیل به این هدف صورت گرفت. ژنراتورها
مقدمه: هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع
ژنراتورها(ساختمان و اساس کار و سیر تکاملی ژنراتوها بخصوص ژنراتور های
سنکرون ) است . به این منظور ، بررسی مقالات منتشر شده که با این موضوع
مرتبط بودند و جمع آوری خلاصه مطالبی از منابع صورت گرفت و بعد چکیده آنها
استخراج شد .
ژنراتورها همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی و کاربردهای خاص دیگر ایفاء کرده است . ساخت اولین نمونه ژنراتور (سنکرون) به انتهای قرن 19 برمی گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. در کانون این تحول ، یک هیدروژنراتور سه فاز 210 کیلو وات قرار گرفته بود. عیلرغم مشکلات موجود در جهت افزایش ظرفیت و سطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده ای برای نیل به این هدف صورت گرفت. مهمترین محدودیتها در جهت افزایش و سطح ولتاژ ژنراتورها ، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک سازی بود .در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک سازی و بهینه سازی روشهای خنک سازی با هوا نتایج موفقیت آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از 1600DC افزایش یافته است. در جهت افزایش ولتاژ ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد. به نحوی که برخی محققان معتقدند در سالهای نه چندان دور ، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست. همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است، انتظار می رود با گسترش این تکنولوژی در ژنراتورهای آینده ، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.ژنراتورها:ماشین هایی هستند که انرژی مکانیکی را از محرک اصلی به یک توان الکتریکی در ولتاژ و فرکانس خاصی تبدیل می نماید.کلمه سنکرون به این حقیقت اشاره دارد که فرکانس الکتریک این ماشین با سرعت گردش مکانیکی شفت قفل شده است ، ژنراتورسنکرون برای تولید بخش اعظم توان الکتریکی در سرتاسر جهان به کار می رود. دو اصل فیزیکی مرتبط با عملکرد ژنراتورها وجود دارد. اولین اصل فیزیکی اصل القائی الکترومغناطیسی کشف شده توسط مایکل فاراده دانشمند بریتانیایی است. اگر یک هادی در یک میدان مغناطیسی حرکت کند یا اگر طول یا حلقه ی القائی ساکنی جهت تغییر استفاده شود. یک جریان ایجاد میشود یا القاء می شود. اگر یک جریان از میان یک کنتاکتور که در میدان مغناطیسی قرار گرفته ، عبور کند میدان ، نیروی مکانیکی بر آن وارد می کند. ژنراتور ها دارای دو اصل هستند: قسمتها و میدان که آهنربای الکترو مغناطیسی با سیم پیچ هایش و آرمیچر و ساختاری که از کنتاکتورحمایت می کند و کار قطع میدان مغناطیسی و حمل جریان القاء شده ژنراتور یا جریان ناگهانی به موتور را دارد است . آرمیچر معمولا" هسته ی نرم آهنی اطراف سیم های القائی که دور سیم پیچ ها پیچیده شده اند ، است . ژنراتور ها از دو قسمت تشکیل شده اند: قسمت متحرک را رتور و قسمت ساکن آن را استاتور می گویند . رتور ها نیز از نظر ساختمان دو دسته اند: ماشین های قطب صاف و ماشین های قطب برجسته. همچنین ژنراتورها بسته به آنکه نوع وسیله گرداننده رتور آنها چه نوع توربینی باشد به صورت زیر تقسیم می شوند:1) توربو ژنراتورها: در این وسیله گرداننده رتور ، توربین بخار است و چون توربین بخار جزء ماشین های تند گرد است بنابراین توربوژنراتور دارای قطب های صاف بوده و این ماشین توانائی ایجاد دورهای بسیاربالا را در قدرت های زیاد دارد امروزه اغلب توربوژنراتورها را دو قطبی می سازند چون با افزایش سرعت گردش کار توربین های بخار با صرفه تر وارزان ترتمام می شود.2) هیدرو ژنراتور ها : در آن وسیله گرداننده رتور توربین آبی است و چون توربین آبی دارای دور کم است بنابراین هیدروژنراتور دارای قطب برجسته بوده و دارای سرعت کم می باشد.3) دیزل ژنراتور ها : در قدرت های کوچگ و اظطراری وسیله گرداننده رتور دیزل است که در این موره هم قطب های رتور آن برجسته می باشد.ساختمان و اساس کار ژنراتور سنکرون:در یک ژنراتور سنکرون یک جریان DC به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس رتور مربوط به ژنراتور به وسیله محرک اصلی چرخانده میشود ، تا یک میدان مغناطیسی دوار در ماشین بوجود آید.این میدان مغناطیسی ، یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید. در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ های میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می نماید و عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اتلاق می شود که ولتاژ اصلی در آن القاء می شود . برای ماشین های سنکرون ، سیم پیچ های میدان در رتور است. رتور ژنراتور سنکرون در اصل یک آهنربای الکتریکی بزرگ است . قطب های مغناطیسی در رتور می تواند از نوع برجسته یا غیر برجسته باشد . کلمه برجسته به معنی قلمبیده است و قطب برجسته ، یک قطب مغناطیسی خارج شده از سطح رتور می باشد. ازطرف دیگر ، یک قطب برجسته یک قطب مغناطیسی هم سطح با سطح رتور است . یک رتور غیر برجسته یا صاف معمولا" برای موارد 2 یا 4 قطبی بکار می روند . در حالی که رتورهای برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغیر است برای کاهش تلفات ، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود ، چون رتور می چرخد ، نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد برای انجام این کار 2 روش موجود است : 1) تهیه توان DC از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک . 2) فراهم نمودن توان DC از یک منبع توان DC که مستقیما" روی شفت ژنراتورهای سنکرون نصب می شود.ساختمان و اساس کار ژنراتور سنکروندر یک ژنراتور سنکرون یک جریان dc به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس روتور مربوط به ژنراتور به وسیله یک محرک اصلی چرخاند می شود، تا یک میدان مغناطیسی دوار در ماشین به وجود آید . این میدان مغناطیسی یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید. در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است: یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ ها ی میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می کند. عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اطلاق می شود که ولتاژ اصلی در آن القاء می شود برای ماشین های سنکرون، سیم پیچ های میدان در رتور است.روتور ژنراتور سنکرون در اصل یک آهن ربای الکتریکی بزرگ است. قطب های مغناطیسی در رتور می تواند از نوع برجسته و غیر برجسته باشد. کلمه برجسته به معنی (قلمبیده )است و قطب برجسته یک قطب مغناطیسی خارج شده از سطح رتور می باشد. از طرف دیگر یک قطب برجسته، یک قطب مغناطیسی هم سطح با سطح رتور است. یک رتور غیر برجسته یا صاف معمولاً برای موارد 2 یا چهار قطبی به کار می روند. در حالی که رتور های برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغییر است برای کاهش تلفات، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود. چون رتور می چرخد نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد.برای انجام این کار 2 روش موجود است :1- از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک . 2- فراهم نمودن توان DCاز یک منبع توان DC ، که مستقیما" روی شفت ژنراتورسنکرون نصب میشود.رینگ های لغزان بطور کامل شفت ماشین را احاطه می کنند ولی از آن جدا هستند. یک انتهای سیم پیچ DC به هر یک از دو انتهای رینگ لغزان در شفت موتور سنکرون متصل است و یک جاروبک ثابت روی هررینگ لغزان سر می خورد . جاروبک ها بلوکی از ترکیبات گرافیک مانند هستند که الکتریسیته را به راحتی هدایت می کنند ولی اصطکاک خیلی کمی دارند و لذا روی رینگ ها خوردگی بوجود نمی آورد. اگر سمت مثبت منبع ولتاژ DC به یک جاروبک و سر منفی به جاروبک دیگروصل می شود. آنگاه ولتاژ ثابتی به سیم پیچ ، جدااز مکان و سرعت زاویه ای آن ، میدان درتمام مدت اعمال می شود. رینگ های لغزان و جاروبک ها به هنگام اعمال ولتاژ DC چند مشکل برای سیم پیچ های میدان ماشین سنکرون تولید می کنند آنها نگهداری را در ماشین افزایش می دهند ، زیرا جاروبک بایدمرتبا" به لحاظ سائیدگی چک شود. علاوه برآن ، افت ولتاژ جاروبک ممکن است تلفات قابل توجه توان را همراه با جریان های میدان به دنبال داشته باشد . علیرغم این مشکلات رینگ های لغزان روی همه ماشین های سنکرون کوچک تر بکار میرود. زیرا راه اقتصادی تر برای اعمال جریان میدان موجود نیست .در موتور ها و ژنراتورهای بزرگ تر ، از محرک های بی جاروبک استفاده می شود تا جریان میدان DC را به ماشین برسانند یک محرک بی جاروبک ، یک ژنراتور AC کوچکی است که مدار میدان آن روی استاتور و مدار آرمیچر آن روی رتور نصب است خروجی سه فاز ژنراتور محرک یکسو شده و جریان مستقیم توسط یک مدار یکسو ساز سه فاز که روی شفت ژنراتور نصب است حاصل می شود که بطور مستقیم به مدار میدان DC اصلی اعمال میگردد. با کنترل جریان میدان DC کوچکی از ژنراتور محرک (که روی استاتور نصب می شود) می توان جریان میدان را روی ماشین اصلی و بدون استفاده از رینگ های لغزان و جاروبک ها تنظیم کرد. چون اتصال مکانیکی هرگز بین رتور و استاتور بوجود نمی آید ، یک محرک جاروبک نسبت به نوع حلقه های لغزان و جاروبک ها ، به نگهداری کمتری نیاز دارد. برای اینکه تحریک ژنراتور بطور کامل مستقل از منابع تحریک بیرونی باشد، یک محرک پیلوت کوچکی اغلب در سیستم لحاظ میگردد . محرک پیلوت ، یک ژنراتور AC کوچک با مگنت های (آهن ربا ) دائمی نصب شده بر روی شفت رتور و یک سیم پیچ روی استاتور است . این محرک انرژی را برای مدار میدان محرک بوجود می آورد که این به نوبه خود مدار میدان ماشین اصلی را کنترل می نماید . اگر یک محرک پیلوتروی شفت ژنراتور نصب شود آن گاه هیچ توان الکتریکی خارجی برای راندمان ژنراتور لازم نیست .بسیاری از ژنراتور های سنکرون که دارای محرک های بی جاروبک هستند ، دارای رینگ های لغزان و جاروبک نیز هستند بنابراین یک منبع اضافی جریان میدان DC در موارد اضطراری در اختیار است . استاتور ژنراتور های سنکرون معمولا" در دو لایه ساخته می شوند : خود سیم پیچ توزیع شده و گام های کوچک دارد تا مولفه های هارمونیک ولتاژ ها و جریان های خروجی را کاهش دهد .چون رتور باسرعتی برابر باسرعت میدان مغناطیسی می چرخد ، توان الکتریکی با فرکانس 50 یا 60 هرتز تولید می شود و از ژنراتور بسته به تعداد قطب ها باید با سرعت ثابتی بچرخد مثلا" برای تولید توان 60هرتز در یک ماشین دو قطب رتور باید با سرعت 3600 دور در دقیقه بچرخد . برای تولید توان 50هرتز در یک ماشین 4 قطب ، رتور باید با سرعت 1500 دور دردقیقه دوران کند . سرعت مورد نیاز یک فرکانس مفروض همیشه از معادله زیر قابل محاسبه است : Fe : فرکانس = سرعت مکانیکی P = تعداد قطب ها ولتاژ القایی در استاتور به شار در ماشین ، فرکانس یا سرعت چرخش ، و ساختمان ماشین بستگی دارد . ولتاژ تولیدی داخلی مستقیما" متناسب با شار و سرعت است ولی خود شار به جریان جاری در مدار میدان رتور بستگی دارد. .ولتاژ درونی برابر ولتاژ خروجی نیست چندین فاکتور ، عامل اختلاف بین این دو هست : 1- اعوجاج موجود در میدان مغناطیسی فاصله هوا به علت جریان جاری در استاتور که به آن عکس العمل آرمیچر می گویند. 2- خود القایی بوبین های آرمیچر 3- مقاومت بوبین های آرمیچر 4- تاثیر شکل قطب ها ی برجسته رتوروقتی یک ژنراتور کار می کند و بار های سیستم را تغذیه می کند آنگاه :1- توان مستقیم و رآکتیو تولیدی بوسیله ژنراتور برابر با مقدار توان تقاضا شده بوسیله بار متصل شده به آن است . 2- نقاط تنظیم گاورنر ژنراتور ، فرکانس کار سیستم قدرت را کنترل می نماید. 3- جریان میدان ( یانقاط تنظیم رگولاتور میدان ) ولتاژ پایانه سیستم قدرت را کنترل می نماید. این وضعیتی است که در ژنراتورهای جدا و به فواصل دور از هم وجود دارد.مولد های AC یا آلترناتورها:مولد های AC یا آلترناتورها درست مثل مولدهای DC براساس القاء الکترومغناطیس کار می کنند ، آنها نیز شامل یک سیم پیچ آرمیچر و یک میدان مغناطیسی هستند اما یک اختلاف مهم بین این دو وجود دارد ، در حالی که در ژنراتورهای DC آرمیچر چرخیده می شود و سیستم میدان ثابت است در آلترناتورها آرایش عکس وجود دارد.آلترناتورها یک ژنراتور ساده بدون کموتاتور ، یک جریان الکتریکی متناوب تولید می کنند ، چنین جریان متناوبی مزیت زیادی دارد برای انتقال توان الکتریکی و از این رو بیشتر ژنراتورهای الکتریکی بزرگ از نوع AC هستند. ژنراتور AC در دو حالت خاص با ژنراتور DC فرق می کند . پایانه های سیم پیچ آرمیچرش بیرون هستند . برای حلقه های لغزان جزئی شده ی جامد روی شفت (میله ) ژنراتور به جای کموتاتور و سیم پیچ های میدان توسط یک منبع DC خارجی تغذیه انرژی می شود تااینکه توسط خود ژنراتور این کار انجام شود . ژنراتور ها ی AC سرعت پایینی با تعداد زیادی قطب در حدود 100 قطب ساخته می شوند. هم برای بهبود بازه شان و هم برای دست یافتن به فرکانس دلخواه به آسانی . آلترناتورها با توربین های سرعت بالا راه اندازی می شوند . فرکانس جریان گرفته شده توسط ژنراتور AC مساوی است با نیمی از تعداد قطبها و تعداد چرخش آرمیچر در ثانیه.بخاطر احتمال جرقه زنی بین جاروبک ها و حلقه های لغزان و خطر شکستهای مکانیکی که ممکن است سبب اتصال کوتاه شود. آلترناتورها به یک سیم پیچ ساکن که بدور یک رتور می چرخد و این رتور شامل تعدادی آهنربای مغناطیسی میدان هستند ساخته می شوند. اصل عملکرد آنها نیز دقیقا" مشابه عملکرد ژنراتورهای AC توصیف شده اند.ژنراتور ها با ولتاژ بالا:شركت ABB اخيرا ژنراتوري با ولتاژ بالا ابداع كرده است . اين ژنراتور بدون نياز به ترانسفورماتور افزاينده بطور مستقيم به شبكه قدرت متصل مي گردد . ايده جديد بكار گرفته شده در اين طرح استفاده از كابل به عنوان سيم پيچ استاتور مي باشد . ژنراتور ولتاژ بالا براي هر كاربرد در نيروگاههاي حرارتي و آبي مناسب مي باشد . راندمان بالا ، كاهش هزينه هاي تعمير و نگهداري ، تلفات كمتر ، تأثيرات منفي كمتر بر محيط زيست ( با توجه به مواد بكار رفته ) از مزاياي اين نوع ژنراتور مي باشد . ژنراتور ولتاژ بالا در مقايسه با ژنراتورهاي معمولي در ولتاژ بالا و جريان پائين كار مي كند . ماكزيمم ولتاژ خروجي اين ژنراتور با تكنولوژي كابل محدود مي گردد كه در حال حاضر با توجه به تكنولوژي بالاي ساخت كابلها ميتوان ولتاژ آنرا تا سطح 400 كيلو ولت طراحي نمود . هادي استفاده شده در ژنراتور ولتاژ بالا بصورت دوار مي باشد در حاليكه در ژنراتورهاي معمولي اين هادي بصورت مثلثي مي باشد در نتيجه ميدان الكتريكي در ژنراتورهاي ولتاژ بالا يكنواخت تر مي باشد . ابعاد سيم پيچ بر اساس ولتاژ سيستم و ماكزيمم قدرت ژنراتور تعيين مي گردد . در ژنراتورهاي ولتاژ بالا لايه خارجي كابل در تمام طول كابل زمين مي گردد ، اين امر موجب مي شود كه ميدان الكتريكي در طول كابل محدود گردد و ديگر مانند ژنراتورهاي معمولي نياز به كنترل ميدان در ناحيه انتهايي سيم پيچ نباشد . جزيي ( Partialdischarge) در هيچ ناحيه اي از سيم پيچ وجود ندارد و همچنين ايمني افراد بهره بردار و يا تعميركار افزايش مي يابد . سربنديها و اتصالات معمولا در فضاي خالي مورد دسترس در محل انجام مي گيرد ، بنابراين محل اين اتصالات در يك نيروگاه نسبت به نيروگاه ديگر متفاوت مي باشد ، اما در هر حال اين اتصالات در خارج از هسته استاتور مي باشد ، براي مثال اتصالات و سربنديها ممكن است زير ژنراتور و يا خارج از قاب استاتور ( Statorframe ) انجام گيرد . بدين ترتيب اتصالات و سربنديها ، مشكلات ناشي از ارتعاشات و لرزش هاي بوجود آمده در ماشين هاي معمولي را نخواهند داشت .در طرح كنوني ژنراتور ولتاژ بالا دو نوع سيستم خنك كنندگي وجود دارد ، روتور و سيم پيچ هاي انتهايي توسط هوا خنك مي گردند در حاليكه استاتور توسط آب خنك مي گردد . سيستم خنك كنندگي آب شامل لوله هاي XLPE قرار گرفته شده در هسته استاتور مي باشد كه آب از اين لوله ها جريان مي يابد و هسته استاتور را خنك نگه مي دارد .مقايسه جريان اتصال كوتاه در نيروگاه مجهز به ژنراتور ولتاژ بالا با نيروگاه مجهز به ژنراتور معمولي نشان مي دهد كه به دليل اينكه در نيروگاه با ژنراتور ولتاژ بالا راكتانس ترانسفورماتور حذف مي گردد جريانهاي خطا كوچكتر مي باشد . منبع :www.ewa.ir موضوعات مرتبط: علمی-مقالات، برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
نحوه فیلتر کردن روغن ترانسفورماتور روغن ترانسفورماتورهای قدرت نقش بسیار مهمی در عملكرد ترانسفورماتورها دارند. نقش عایق كنندگی، خنك كنندگی و تشخیص عیب از جمله مهمترین وظایف روغن می باشند. با پیرشدن ترانسفورماتور ، روغن این دستگاه بعضی از خصوصیات شیمیایی و الكتریكی خود را از دست می دهد. از جمله مهمترین این خصوصیات می توان به خصوصیات الكتریكی كه حائز اهمیت می باشند، اشاره نمود. دلایل اصلی كه روغن ترانسفورماتورهای قدرت را دچار مشكل می نمایند عبارتند از: ۱) افزایش ذرات معلق در روغن ۲) وجود آب به مقدار زیاد در روغن ۳) وجود آلودگی های شیمیایی مانند اسیدیته و... مسائل
فوق باعث تغییر پارامترهای متعدد می شوند. به عنوان مثال افزایش ذرات معلق
و وجود آن باعث كاستن قدرت دی الكتریك روغن و افزایش اسیدیته، باعث خوردگی
كاغذ و اجزای داخلی ترانسفورماتور می شود. برای بهبود روغن ترانسفورماتوری
كه دچار ضعف های متعدد شده است می توان از فیلتراسیون استفاده نمود. با
فیلتر نمودن روغن می توان ذرات معلق آن را جدا نمود و در نتیجه ولتاژ شكست
را بالا برد. می توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا
نمود. حذف آلودگی های شیمیایی فقط با كمك فیلترهای شیمیایی ممكن است.
از جمله مهمترین آلودگی كه روغن ترانسفورماتور را تحت تأثیر قرار می دهد وجود آب به مقدار كم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتی امكان پذیر نمی باشد. علت این مسأله وجود مقادیر بسیار زیاد آب داخل كاغذ ترانسفورماتور می باشد كه با جدا نمودن آب روغن دوباره جایگزین آن می شود. ● روشهای فیلتر نمودن الف) روشهای Off-line از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند. این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد. ب) روشهای نوین – روشهای در حین کار برای جدا نمودن آب به صورت بهینه، لازم است كه از فیلترهای در حین كار استفاده نمود. مهمترین مزایای فیلترهای (خشك كن) های در حین كار خشك نمودن بهینه ترانسفورماتور در طول زمان و همچنین عدم لزوم خاموشی ترانسفورماتور را می توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود ۲۵۰ لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد. ● مزایای خشك كردن On-Line روغن و كاغذ عایقی ترانسفورماتورهای قدرت با استفاده ازدستگاه V۳۰ ▪ رطوبت زدائی از روغن ترانسفورماتور بصورت On-Line ▪ افزایش ولتاژ شکست روغن عایقی ▪ رطوبت زدائی از کاغذ عایقی ترانسفورماتور ▪ کاهش میزان ذرات معلق داخل روغن ترانس ▪ کاهش میزان ضریب تلفات عایقی روغن ▪ کاهش میزان اسیدیته روغن ▪ افزایش قابلیت بارگیری ترانسفورماتور ▪ افزایش عمر باقیمانده ترانسفورماتور ▪ عملکرد مطمئن و عدم تأثیر سو بر بهره برداری عادی از ترانسفورماتور ▪ گاززدائی از روغن ترانسفورماتور با استفاده از روش De-Gassing ▪ اعلام آلارم و خروج ترانسفورماتور از مدار در صورت تشکیل مقدار زیاد گاز موضوعات مرتبط: علمی-مقالات، برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
تاریخچه ساخت ترانسفور ماتور قدرت خشك در ژوئيه 1999، شركت ABB، يك ترانسفور ماتور فشار قوي خشك به نام “Dryformer “ ساخته است كه نيازي به روغن جهت خنك شدن بار به عنوان دي الكتريك ندارد.در اين ترانسفورماتور به جاي استفاده از هاديهاي مسي با عايق كاغذي از كابل پليمري خشك با هادي سيلندري استفاده مي شود.تكنولوژي كابل استفاده شده در اين ترانسفورماتور قبلاً در ساخت يك ژنراتور فشار قوي به نام "Power Former" در شركتABB به كار گرفته شده است. نخستين نمونه از اين ترانسفورماتور اكنون در نيروگاه هيدروالكتروليك “Lotte fors” واقع در مركز سوئد نصب شده كه انتظار مي رود به دليل نياز روزافزون صنعت به ترانسفورماتور هايي كه از ايمني بيشتري برخوردار باشند و با محيط زيست نيز سازگاري بيشتري داشته باشند، با استقبال فراواني روبرو گردد. ايده ساخت
ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسي، طراحي و ساخت
اين ترانسفورماتور از بهار سال 1996 در شركت ABB شروع شد. ABB در اين
پروژه از همكاري چند شركت خدماتي برق از جمله Birka Kraft و Stora Enso
نيز بر خوردار بوده است. تكنولوژي ساخت ترانسفورماتور فشار قوي فاقد روغن در طول عمر يكصد ساله ترانسفورماتورها، يك انقلاب محسوب مي شود. ايده استفاده از كابل با عايق پليمر پلي اتيلن (XLPE) به جاي هاديهاي مسي داراي عايق كاغذي از ذهن يك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است. تكنولوژي استفاده از كابل به جاي هاديهاي مسي داراي عايق كاغذي، نخستين بار در سال 1998 در يك ژنراتور فشار قوي به نام “ Power Former” ساخت ABB به كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هاديهاي شمشي ( مستطيلي ) در سيم پيچي استاتور استفاده مي شد، از هاديهاي گرد استفاده شده است. همانطور كه از معادلات ماكسول استنباط مي شود، هاديهاي سيلندري ، توزيع ميدان الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند بطوريكه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان 30 در صد كاهش مي يابد. در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي ماند و سطح كابل داراي پتانسيل زمين مي باشد.در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تاثير عايق كابل قرار نمي گيرد.در يك ترانسفورماتور خشك، استفاده از تكنولوژي كابل، امكانات تازه اي براي بهينه كردن طراحي ميدان هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش هاي گرمايي فراهم كرده است. در فرايند تحقيقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست يك ترانسفورماتور آزمايشي تكفاز با ظرفيت 10 مگا ولت آمپر طراحي و ساخته شد و در Ludivica در سوئد آزمايش گرديد. “ Dry former” اكنون در سطح ولتاژ هاي از 36 تا 145 كيلو ولت و ظرفيت تا 150 مگا ولت آمپر موجود است. نيروگاه مدرن Lotte fors ترانسفورماتور خشك نصب شده در Lotte fors كه بصورت يك ترانسفورماتور – ژنراتور افزاينده عمل مي كند ، داراي ظرفيت 20 مگا ولت امپر بوده و با ولتاژ 140 كيلو ولت كار مي كند. اين واحد در ژانويه سال 2000 راه اندازي گرديد. اگر چه نيروگاه Lotte fors نيروگاه كوچكي با قدرت 13 مگا وات بوده و در قلب جنگلي در مركز سوئد قرار دارد اما به دليل نوسازي مستمر، نيروگاه بسيار مدرني شده است. در دهه 80 ميلادي ، توربين هاي مدرن قابل كنترل از راه دور در ان نصب شد و در سال 1996، كل سيستم كنترل آن نوسازي گرديد. اين نيروگاه اكنون كاملاً اتوماتيك بوده و از طريق ماهواره كنترل مي شود. ويژگيهاي ترانسفورماتور خشك ترانسفورماتور خشك داراي ويژگيهاي منحصر بفردي است از جمله: 1- به روغن براي خنك شده با به عنوان عايق الكتريكي نياز ندارد. 2- سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكي از مهمترين ويژگي هاي آن است. به دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زير زميني و همچنين احتراق و خطر آتش سورزي كم ميشود. 3- با حذف روغن و كنترل ميدانهاي الكتريكي كه در نتيجه آن خطر ترانسفور ماتور از نظر ايمني افراد ومحيط زيست كاهش مي يابد، امكانات تازه اي از نظر محل نصب ترانسفورماتور فراهم ميشود.به اين ترتيب امكانات نصب ترانسفورماتور خشك در نقا شهري و جاهايي كه از نظر زيست محيطي حساس هستند، فراهم ميشود. 4- در ترانسفورماتور خشك به جاي بوشينگ چيني در قسمتهاي انتهايي از عايق سيسيكن را بر استفاده ميشود. به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين ميرود. 5- كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش نشاني كاهش ميدهد. بنابراين از اين دستگاهها در محيط هاي سر پوشيده و نواحي سرپوشيده شهري نيز مي توان استفاده كرد. 6- با حذف روغن در ترانسفورماتور خشك، نياز به تانك هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين ميرود.بنابراين كار نصب آسانتر شده و تنها شامل اتصال كابلها و نصب تجهيزات خنك كننده خواهد بود. 7- از ديگر ويژگي هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راههاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره برداري شود. با بكار گيري ترانسفورماتور خشك اين امر امكان پذير است . 8- اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفورماتور نمي شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي شود.بعلاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابجا مي شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي كند. نخستين تجربه نصب ترانسفررماتور خشك ترانسفورماتورخشك براي اولين بار در اواخر سال 1999 در Lotte fors سوئد به آساني نصب شده و از آن هنگام تاكنون به خوبي كار كرده است. در آينده اي نزديك دومين واحد ترانسفورماتور خشك ساخت ABB (Dry former ) در يك نيروگاه هيدروالكتريك در سوئد نصب مي شود. چشم انداز آينده تكنولوژي ترانسفورماتور خشك شركت ABB در حال توسعه ترانسفورماتور خشك Dryformer است. چند سال اول از آن در مراكز شهري و آن دسته از نواحي كه از نظر محيط زيست حساس هستند، بهره برداري مي شود. تحقيقات فني ديگري نيز در زمينه تپ چنجر خشك، بهبود ترمينال هاي كابل و سيستم هاي خنك كن در حال انجام است. در حال حاضر مهمترين كار ABB، توسعه و سازگار كردن Dryformer با نياز مصرف كنندگان براي كار در شبكه و ايفاي نقش مورد انتظار در پست هاست. منبع : 1 - مجله T&D – - آگوست 1999 2- مجله -PEI - مه 2000 3- http://www.abb.com www.eaw.ir موضوعات مرتبط: علمی-مقالات، برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
ترانس های جریان (CT) ترانسهای جریان برای نمونه گیری جریان به نسبت عبور جریان از اولیه خود و القای آن در ثانویه استفاده میشوند. این ترانسها به منظور حفاظت و اندازه گیری در ابتدای خطوط ورودی به پستها و همچنین در ورودی ترانس قدرت و ورودی ثانویه ترانس و همچنین در خروجی های پست و نقاط کلیدی دیگر که احتیاج است جریان در آن نقطه تحت نظر باشد استفاده میشود که هر کدام از این نقاط با ترانس مخصوص به خود چه از نظر عایقی و ساختمان و چه از نظر قدرت و دقت ، نصب و استفاده می گردند . ترانسفورماتور جریان از دو سیم پیچ اولیه و ثانویه تشکیل شده که جریان واقعی در پست از اولیه عبور نموده و در اثر عبور این جریان و متناسب با آن، جریان کمی (در حدود آمپر) در ثانویه به وجود میآید. ثانویه این ترانسها با مقیاس کمتری از اولیه خود که تا حد بسیار بالایی تمام ویژگیهای جریان در اولیه خود را دارد به تجهیزات فشار ضعیف پست و رله ها و نشاندهنده ها متصل میشود. ثانویه این ترانسها دارای سیم پیچ با دورهای زیادتری نسبت به اولیه که بیشتر مواقع تنها یک شمش و یا چند دور از شمش است ساخته میشود .
نکته ای که قابل توجه است ، مقدار سیم پیچ در تعداد دور است که باید به
نسبت مورد نظر رسید . در ثانویه سیم های بدور هسته سیم های لاکی هستند .
هسته های حفاظتی بدون در نظر گرفتن تصحیح دور طراحی میشنود ولی در هسته
های اندازه گیری جهت رسیدن به بارها و دقت های مورد نیاز تصحیح دور انجام
میشود .میزان بار در ثانویه ، از نکات دیگر است که در طراحی سطح مقطع سیم
پیچ موثر است .این ترانسها هم باید در حالت و شرایط عادی و هم در شرایط
اضطراری مثل جریان زیاد و یا هر خطایی که ممکن است بوجود آید قابلیت
اندازه گیری ونمونه گیری جریان را داشته باشد .
یکی ازمهمترین موارد در ساختمان یک ترانسفورماتور جریان، اختلاف ولتاژ خیلی زیاد بین اولیه و ثانویه میباشد زیرا ولتاژ اولیه همان ولتاژ نامی پست است، در حالیکه ولتاژ ثانویه خیلی پایین میباشد که با توجه به این مورد بایستی بین اولیه و ثانویه ایزولاسیون کافی وجود داشته باشد. ترانسفورماتورهای جریانی که در پستهای فشارقوی مورد استفاده قرار میگیرند، دارای ایزولاسیون کاغذ و روغن (توأما") میباشند. طرح این ترانسفورماتورها نیز بستگی به سازنده آن داشته، ولی بطور کلی ترانسفورماتورهای جریان از نظر ساختمانی در انواع مختلف ساخته میشوند: 1- CT هاي هسته پايين 2- CT هاي هسته بالا 3- نوع بوشينگي 4- نوع شمشي 5- نوع حلقوي 6- نوع قالبي يا رزيني (Castin Resine) الف) ترانسهای جریان هسته پائین: ترانسفورماتورهای جریان هسته پایین و یا "Tank Type": در این نوع، هادی اولیه در داخل یک بوشینگ به شکل "U" قرار دارد، بطوریکه قسمت پایین "U" در داخل یک تانک قرار دارد و در این حالت اطراف اولیه بوسیله کاغذ عایق شده و در روغن غوطهور میباشند در این حالت مخزن فلزی از نظر الکتریکی محافظت میشود . سیم پیچیهای ثانویه بصورت حلقه، هادی اولیه را در بر میگیرند. در این طرح طول اولیه نسبتا" زیاد بوده و عبور جریان باعث گرم شدن ترانس جریان میگردد . استفاده از این نوع ترانس های جریان بیشتر در مواقعی است که چندین هسته و نیز اتصالات متعدد در اولیه برای دسترسی به نسبتهای مختلف جریان لازم باشد. در این ترانسها ترکیب روغن به همراه دانه های ریز کوارتز خالص است که منجر به حد اقل شدن ابعاد ترانس میشود . محفظه روغن کاملاً آب بندی است و نیاز به باز بینی و نگهداری ندارد. ب ) ترانسهای جریان هسته بالا : در این نوع ترانسها مسیر طی شده در اولیه بسیار کوتاه میشود . هادی اولیه از داخل یک حلقه عبور کرده و سیم پیچ ثانویه دور هسته حلقوی پیچیده شده است . که ثانویه آن در قسمت بالا بوده و به نام "Top Core " و یا "Inverted" مشهور میباشند. کلیه سیم پیچ ها در داخل عایقی از روغن قرار دارد و سرهای ثانویه بوسیله سیم های عایق شده از داخل یک لوله به جعبه ترمینال هدایت میشود. جهت ایجاد عایق کافی بین ثانویه و اولیه در اطراف سیم پیچ ثانویه تعداد زیادی دور کاغذ که با توجه به ولتاژ ترانسفورماتورها تعیین میگردد، پیچیده میشود و فضای خالی بین کاغذ و اولیه نیز توسط روغن احاطه میشود. در ولتاژهای بالا ممکن است که سیم پیچ ثانویه در یک قالب آلومینیومی جاسازی شود. در هر دو حالت فوق بایستی سعی شود که به هیچ عنوان هوا و یا ذرات دیگر به داخل محفظه ترانسفورماتورهای جریان نفوذ ننموده و از طرف دیگر امکان انبساط و انقباض روغن در اثر تغییر درجه حرارت نیز وجود داشته باشد، لذا در بالای ترانسفورماتورها بایستی فضای خالی به وجود آورد که به منظور ایزوله نمودن از هوا، از فولاد یا تفلون و یا دیافراگمهای لاستیکی (ارتجاعی) استفاده میشود که در اثر انبساط و انقباض روغن بالا و پایین میروند. در بعضی از طرحها نیز محفظه بالای روغن را از گاز نیتروژن پر میکنند. ج ) ترانس های جریان بوشینگی : در بعضی از دستگاهها نظیر کلیدهایی از نوع "Dead Tank Type" و یا ترانسفورماتورهای قدرت و راکتورها جهت صرفهجویی میتوان ثانویه یک ترانس جریان را در داخل بوشینگ دستگاهها قرار داده، بطوریکه اولیه آن با اولیه دستگاه مشترک باشد. این نوع ترانس را ترانسفورماتورهای جریان از نوع بوشینگی مینامند. در ولتاژهای پایین نیز ممکن است از رزین به عنوان ماده جامد عایقی استفاده نمود که این نوع ترانسفورماتورهای جریان تا ولتاژ 63 کیلوولت کاربرد بیشتری دارند و در حال حاضر سازندگان مختلفی سعی مینمایند که این طرح را برای ولتاژهای بالاتر نیز مورد استفاده قرار دهند. د ) ترانس جريان نوع قالبي يا رزيني: از اين نوعCT ها بيشتر در مناطق گرمسيري و به منظور جلو گيري از نفوذ رطوبت و گرد و خاك به داخل CT استفاده مي شودو تا سطح ولتاژ 63 كيلو ولت و جريان 1200 آمپر بيشتر طراحي نشده اند. این ترانسها بمنظور جداسازی مدارهای حفاظتی واندازه گیری از مدار فشار قوی و تبدیل مقادیر جریان یا ولتاژ به میزان مورد نظر بکار میروند . این نوع ترانسها قابل نصب در تابلوهای فشار متوسط است . عایق این نوع ترانسها از نوع اپوکسی رزین است که تحت خلا ریخته گری میشود و با خواص عایقی و مکانیکی مناسب ساخته میشود . ترانس هاي جريان از نظر هسته به دو نوع تقسيم مي شوند : 1- ترانس هاي جريان با هسته اندازه گيري 2- ترانس هاي جريان با هسته حفاظتي 1- ترانس هاي جريان با هسته اندازه گيري وظيفه دارند كه در حدود جريان نامي و عادي شبكه از دقت لازم برخوردار باشند. و اين نوع هسته ها بايد در جريان هاي اتصالي كوتاه به اشباع رفته و مانع از ازدياد جريان در ثانويه و در نتيجه مانع سوختن و صدمه ديدن دستگاه هاي اندازه گيري در طرف ثانويه شوند. 2- ترانس هاي جريان با هسته حفاظتي : بايد در جريانهاي اتصال كوتاه هم بتوانند دقت لازم را داشته و ديرتر به اشباع رفته تا بتوانند متناسب با افزايش جريان در اوليه ، آن را در ثانويه ظاهر كرده و با تشخيص اين اضافه جريان در ثانويه توسط رله هاي حفاظتي فرمان قطع يا تريپ به كليدهاي مربوطه داده تا قسمتهاي اتصالي شده و معيوب از شبكه جدا شوند. قدرت نامي ترانس جريان: قدرت اسمي ترانس جريان مساوي حاصل ضرب جريان ثانويه اسمي و افت ولتاژ مدار خارجي ثانويه حاصل از اين جريان مي باشد. مقادير استاندارد قدرت هاي اسمي عبارتند از : 2.5 – 5 – 10 – 15 – 30 VA که البته مقادیر بالاتر در ترانسها قابل طراحی و استفاده نیز میباشد . كلاس دقت ترانس هاي جريان: ميزان خطاي CT ها با توجه كلاس دقت آنها مشخص مي گردد. كلاس دقت CT براي هسته اندازه گيري و حفاظتي به دو صورت مختلف بيان مي گردد. براي هسته اندازه گيري درصد خطاي جريان را در جريان نامي ارائه مي كنند. مثلاً كلاس دقت CL=0.5 يعني 5/0 % خطا در جريان نامي CT هاي اندازه گيري را معمولا در كلاس دقت هاي 1/0 – 2/0 – 5/0 – 1 -3 – 5 – مشخص مي كنند و در كاتولوگ ها و نيم پليت تجهيزات به صورت 2/0:cl 5/1200 c.t: مشخص مي گردد . در ضمن بايد توجه داشت اگر بر روي نيم پليت ها 800c نوشته شود يعني ولتاژ اتصال كوتاه اگر از 800 ولت بالاتر رود ct به حالت اشباع خواهد رفت . براي هسته هاي حفاظتي درصد خطاي جريان را براي چند برابر جريان نامي بصورت XPY بيان مي كنند . %X خطا در Y برابر جريان نامي مثلا 10 P 5 يعني 5% خطا در 10 برابر جريان نا مي كه CT هاي حفاظتي بر اساس استاندارد IEC بصورتP 5 وP 10 مي باشند ( 30 P 5 و 20 P 5 و10 P 5 ) و (20 P 10و 10 P 10). CT ها داراي چند نوع خطا مي باشند : 1- خطاي نسبت تبديل RAT IO =KIS-IP/IP 2-خطاي زاويه : PHASE DISPLUCEMENT: اختلاف زاويه و ثانويه CT با رعايت نسبت تبديل خطاي زاويه است . 3- CT هاي حفاظتي داراي خطاي تركيبي مي باشند . مثلا خطاي تركيبي CT نوع 20P 5 برابر5% است. 4- CT هاي حفاظتي داراي خطاي ALF مي باشند. ( ACURRACY LIMIT FUCTER) يعني تاچند برابر جريان نامي CT نبايد خطاي CT از حد گارانتي تجاوز كند مثلا خطاي ALF در CT 20 p 5 برابر 20 مي باشند . منبع: www.ewa.ir موضوعات مرتبط: علمی-مقالات، برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
تکنولوژی الکتونیک قدرت و درایور های AC تکنولوژی الکترونیک قدرت (Power Electronics) ،
بهره وری و کیفیت فرایندهای صنعتی مدرن را بی وقفه بهبود میبخشد. امروزه
با کمک همین تکنولوژی امکان استفاده از منابع انرژی غیرآلاینده بازیافتی
(ReneWable Energy ) ، نظیر باد و فتو ولتائیک فراهم شده است. تخمین زده
میشود که با استفاده از الکترونیک قدرت، حدود 15 تا 20 درصد امکان صرفه
جوئی انرژی الکتریکی وجود دارد [1].در واقع با کاهش بیوقفه قیمت ها در
عرصه الکترونیک قدرت زمینه برای حضور آنها در کاربردهای صنعتی، حمل ونقل و
حتی خانگی فراهم میگردد.
نیروی محرک بيشتر پمپها و فن ها موتورهاي القائي هستند که در دور
ثابت کار میکنند. ليكن در سالهاي اخير با پيشرفتهاي انجام گرفته در زمينه
تكنولوژي الكترونيك قدرت ، استفاده از موتورهاي القائي قفس سنجابي همراه
با كنترل كننده دور موتور (AC DRIVE يا اينورتر يا بطور ساده درايو) رو به
گسترش است . درایوها دستگاههائی هستند که توان ورودی با ولتاژ و فرکانس
ثابت را به توان خروجی با ولتاژ و فرکانس متغیر تبدیل میکنند. باید توجه
کرد که دور یک موتور تابعی از فرکانس منبع تغذیه آن است. برای این منظور
یک درایو نخست برق شبکه را به ولتاژ DC تبدیل کرده و سپس آنرا با استفاده
از یک اینورتر مجددا به ولتاژ AC با فرکانس و ولتاژ متغیر تبدیل میکند. در
شکل(1) قسمتهای اصلی یک درایو ولتاژ پائین نشان داده شده است. همانطور که
مشاهده میکنید قسمت اینورتر متشکل از سوئیچهای قدرتی است که در سالهای
اخیر تغییرات تکنولوژیک زیادی پیدا کرده اند. در واقع با معرفی سوئیچهای
قدرتی چون IGBT با قیمتهای رو به کاهش، زمینه برای عرضه درایوهای با قیمت
مناسب فراهم شد. در هر حال خاطر نشان میکنیم که شکل موج خروجی درایو
ترکیبی از پالسهای DC با دامنه ثابت است. این موضوع موجب میشود که خود
درایو منشا اختلالاتی در کار موتور شود. برای مثال کیفیت شکل موج خروجی
درایو میتواند سبب اتلاف حرارتی اضافی ناشی از مولفه های هارمونیکی فرکانس
بالا در موتور شده و یا موجب نوسانات گشتاور Torque Pulsationدر موتور
گردد. با این حال درایوهای امروزی بدلیل استفاده از سوئیچهای قدرت سریع
این نوع مشکلات را عملا حذف کرده اند. شکل(1): ساختمان یک کنترل کننده دور موتور ( فقط قسمتهای قدرت نشان داده شده است). كنترل كننده هاي دور موتورهاي الكتريكي هر چند كه ادوات پيچيده اي
هستند ولي چون در ساختمان آنها از مدارات الكترونيك قدرت استاتيك استفاده
مي شود و فاقد قطعات متحرك مي باشند، از عمر مفيد بالائي برخوردار هستند
. مزيت ديگر كنترل كننده هاي دور موتور توانائي آنها در عودت دادن انرژي
مصرفي در ترمزهاي مكانيكي و يا مقاومت هاي الكتريكي به شبكه مي باشد . در
چنين شرائطي با استفاده از كنترل كننده هاي دور مدرن مي توان از اتلاف اين
نوع انرژي جلوگيري نمود . بطوريكه در برخي كاربردها قيمت انرژي بازيافت
شده از اين طريق ، در كمتر از يكسال معادل هزينه سرمايه گذاري سيستم
بازيافت انرژي مي شود . کنترل کننده های دور موتور انواع مختلفی دارند.
آنها قادرند انواع موتورهای AC و DC را کنترل کنند. قیمت کنترلرها وابسته
به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. ساده ترین روش کنترل
موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/F ثابت) میباشد.
اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده قرار میگیرد.
این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری خوب عمل
میکنند. مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع
کنترلرها برای کاربردهای با پاسخ سریع مناسب نمیباشند. روبوتها و ماشینهای
ابزار نمونه هائی از کاربردهای با دینامیک بالا هستند. در این کاربردها
روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی برداری با تفکیک
مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و کنترل آنها با
استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC نظیر موتور DC
کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ گشتاور سریع
آنها در موتورهای AC نیز در دسترس خواهد بود. برای مثال پاسخ گشتاور در
روشهای برداری حدود10 – 20msو در روشهای کنترل مستقیم گشتاور (Direct
Torque Control )این زمان حدود 5ms است. اینک روشهای کنترل برداری متعددی
پیاده سازی شده است که بررسی آنها خارج از حوصله این مقاله است. در هر حال
نوع کنترلر مطلوب، متناسب با کاربرد انتخاب میگردد. در شکل(2) خلاصه ای از
انواع روشهای کنترل موتورهای AC نمایش داده شده است. شکل(2): خلاصه ای از انواع روشهای کنترل موتورهای AC منابع: Bimal K. Bose,"Energy, Environment, and Advances in Power Electronics," IEEE Trans. Power Electronics, VOL www.partosanat.com www.ewa.ir موضوعات مرتبط: برق و الکترونیک-مقالات
نوشته شده به دست سید مصطفی حسینی
اهميت
ترانسفورماتورها در صنعت برق و شبكههيا صنعتي، بركسي پوشيده نيست. امروزه
يكي از ملزومات اساسي در انتقال و توزيع الكتريكي در جهان
ترانسفورماتورها، ميباشند.
ترانسفورماتورها در اندازهها و توانهاي مختلفي جهت تغيير سطح ولتاژ الكتريكي بهمنظور كاهش تلفات ولتاژ در فرآيند انتقال و توزيع انرژي الكتريكي بهكار ميروند. در صنعت سيمان، بهعنوان يكي از مصرف كنندههاي بزرگ برق و استفاده از سطوح ولتاژ مختلف در آن، استفاده از ترانسفور ماتورها يكي از اركان اجتنابناپذير ميباشد. در اين مقاله به اختصار ترانسفورماتورها، ساختمان آنها، تعميرات و نگهداري آنها مورد بررسي قرار گرفته است. بقیه متن در ادامه مطلب موضوعات مرتبط: برق و الکترونیک-مقالات
.:: This Template By : Theme-Designer.Com ::. |
درباره وبگاه
![]() این سایت واسه اوناییه که دوست دارن از هر شاخه علم یه چیزی یاد بگیرن. ما رو از نظراتتون بی نصیب نگذارید. یا حق... (اللهم صلّ علي محمّد و آل محمّد و عجّل فرجهم) آرشیو مطالب
آخرین مطالب
|